A Tantalum Carbyne Complex

Sir:

"Ta-Intramolecular α -hydrogen abstraction in $[CH_2C(CH_3)_3]_5"$ Ta[CH₂Cgives neopentane and $(CH_3)_3]_3[CHC(CH_3)_3]$ (1), one of the very few carbene complexes not containing a heteroatom like oxygen or nitrogen.¹ Further studies showed that the carbene α -hydrogen in 1 can be removed by butyllithium in the presence of (e.g.) a diamine to give $Ta[CH_2C(CH_3)_3]_3[C[C (CH_3)_3$ [Li·L]} (2; L = N,N'-dimethylpiperazine² (dmp)), a "lithio-carbene" complex. The crystal structure of 2 shows that it is best formulated as a "carbyne", $\{[(CH_3)_3CCH_2]_3Ta \equiv CC(CH_3)_3\}$ ·Li (dmp).

Crystals of 2 (from pentane) are orthorhombic, the space group is $P2_12_12_1$ (it imposes no point symmetry), and cell dimensions are a = 17.196 (6) b = 17.512 (4), and c =10.503 (3) Å. The calculated density for four molecules per cell is 1.23 g cm⁻³. A total of 2478 reflections were measured by counter techniques and corrected for absorption effects. The structure was solved by heavy atom techniques and refined by least-squares methods to $R = 0.071 \ (\Sigma \| F_0 \|$ $-|F_c|/\Sigma|F_o|$ for 2192 reflections with $F_o > \sigma(F_o)$. The working model included all methylene hydrogens.

Coordination about tantalum (Figure 1) is nearly tetrahedral (C-Ta-C = 100.6 (9) to 115.9 (9)°). Repulsion between tert-butyl groups opens the neopentyl Ta-C-C angles to ca. 128° (cf. $Cr[CH_2C(CH_3)_2(C_6H_5)]_4$ (ref 3)). Bond distances within the chelated lithium fragment, between neopentyl α -carbons and tantalum, and between α - and β -carbons are normal. The large vibrational and/or librational motion of the methyl groups to some extent limits the precision of all structural parameters.

Two unusual features are the short Ta-C(3) distance (1.76 (2) A) and the large Ta-C(3)-C angle $(165 (1)^{\circ})$. Neither is consistent with interpretation as a lithio-carbene, Ta=C[C(CH₃)₃][Li·L]; Ta=C should be about 2.05 Å and Ta-C-C about 120° (ref 4). Since a Ta-C single bond distance is about 2.25 Å, 1.76 Å is more consistent with a triple bond between Ta and C(3). The large Ta-C(3)-Cangle is also consistent with this interpretation. In fact both values compare well with the $M \equiv C$ bond distances and $M \equiv C - C$ angles in the only other previously known carbyne complexes,⁵ (CO)₄XMCR and (CO)₃[P(CH₃)₃]-XMCR (M = Cr, Mo, W; X = halogen) (see Table I). There is therefore little doubt that **2** is more a carbyne than a carbene complex.

A valence bond description of the bonding of is is " $[Li(dmp)]^+$ " to " $[Ta\{CH_2C(CH_3)_3\}_3(CC(CH_3)_3)]^$ not straightforward. The angles subtended at the Li atom preclude tetrahedral coordination. Though the Li-C(3) distance is normal for a covalent bond, the Li-C(4) distance is long and probably at best a very weak interaction since the bonding requirements of C(4) are already satisfied. A more satisfactory bonding interpretation is based on trigonal Li. The bisector of the N-Li-N angle points directly at the center of the Ta $\equiv C(3)$ bond, an interaction related to the association of N-chelated Li moieties with electron-rich centers in delocalized carbanion systems.⁶ In any case, no description seriously jeopardizes the carbyne interpretation. That the lithium fragment may dissociate to give a true salt in some circumstances is suggested by the fact that the conductance of 2 in THF is about 20% that of $[Li(THF)_4]^+$ - $[Ta(C_6H_5)_6]^-$ (ref 7).

Figure 1. Molecular structure of $\{[(CH_3)_3CCH_2]_3Ta = CC(CH_3)_3\}$ Li(dmp) (dmp = N, N'-dimethylpiperazine).

 Table I.
 Bond Distances and Angles in Metal-Carbyne Complexes

No		M == C (Å)	M≡C−C (deg)
2	$\left[(CH_3)_3 CCH_2 \right]_3 Ta = CC(CH_3)_3 \right] \cdot Li(dmp)$	1.76(2)	165 (1)
3	$(CO)_4(I)WC(C_4H_5)$	1.90 (5)	162 (4)
4	$(CO)_{4}(I)CrC(CH_{3})$	1.69 (1)	180 (fixed)
5	$(CO)_{3}[P(CH_{3})_{3}](Br)CrCCH_{3}$	1.68 (3)	177 (3)

That 2 is formed by deprotonation of the carbon carbon in 1 should not be overlooked; i.e., 1 which is deuterated 81% at the neopentylidene α -carbon¹ reacts with LiC₄H₉. dmp in hexane to give 2 and butane-81% d_1 . The neopentyl and neopentylidene ligands in 1 are probably stereochemically and sterically essentially identical. Therefore the neopentylidene α -hydrogen is more acidic than neopentyl α hydrogens, a fact which may help to explain why $[M[CH_2Si(CH_3)_3]_2[CSi(CH_3)_3]]_2$ (6, M = Nb or Ta),⁸ and not $M[CH_2Si(CH_3)_3]_3[CHSi(CH_3)_3]$ (7), has been isolated; the carbene α -hydrogen in 7 should be more acidic than in 1 since its carbon is α to Si.

References and Notes

- (1) R. R. Schrock, J. Am. Chem. Soc., 96, 6796 (1974).
- (2) L can also be (THF)2, N,N,N',N'-tetramethylethylenediamine, (p-dioxane)2, or 1,2-dimethoxyethane.
- (3) V. Gramlich and K. Pfefferkorn, J. Organomet. Chem., 61, 247 (1973).
- (4) We base these estimates on an X-ray structure of a true tantalum-car-bene complex, the results of which will be published separately.
- (5) E. O. Fischer, G. Kreis, C. G. Kreiter, J. Müller, G. Huttner, and H. Lorenz, Angew. Chem., Int. Ed. Engl., 12, 564 (1973); G. Huttner, H. Lorenz, and W. Gartzke, *ibid.*, 13, 609 (1974).
 (6) G. Stucky, Adv. Chem. Ser., No. 130, 56 (1974).

- (a) G. Stucky, *Adv. Chem. Ser.*, **No.** 150, 56 (1974).
 (7) U. Klabunde, manuscript in preparation.
 (8) (a) W. Mowat and G. Wilkinson, *J. Chem. Soc.*, *Dalton Trans.*, 1120 (1973); (b) F. Huq, W. Mowat, A. C. Skapski, and G. Wilkinson, *Chem. Commun.*, 1477 (1971).

Lloyd J. Guggenberger,* Richard R. Schrock

Contribution No. 2240, Central Research and Development Department, E. I. du Pont de Nemours and Co. Experimental Station Wilmington, Delaware 19898 Received February 24, 1975